Triangle Challenge

D version by Stewart Gordon

Contents of this archive

Readme.doc	This document
triangles1.d	First console version (source)
triangles2.d	Second console version (source)
triangles3.d	GUI version (source)
triangles3.rc	GUI version (resource file)
triangles1.exe	First console version (executable)
triangles2.exe	Second console version (executable)
triangles3.exe	GUI version (executable)
Makefile	Makefile

Implementation notes

This solution to the Triangle Challenge is written in D <<u>http://www.digitalmars.com/d/</u>>.

The first console version merely calculates the number of triangles. The second console version displays the enumeration of triangles, as a rectangular grid that reduces to the triangular grid under the transformation described in this document.

For the GUI version, I have used SDWF <<u>http://smjg.port5.com/pr/d/sdwf/</u>>, a Windows programming library that I am developing. It is written under SDWF 0.4, which is likely to be released in early November. I believe it will compile under SDWF 0.3, although I haven't had time to check.

Determining the number

The problem is to calculate the number of triangles in this figure:

To solve the problem, we consider a rectangular version:

The number of rectangles in this figure is determined by the number of distinct ranges of rows and columns. The number of row ranges is determined by the triangle of the total number of rows in the grid:

$$R_1 = \frac{1}{2}n_1(n_1 + 1)$$

When there are two dimensions to consider, the set of rectangles is the Cartesian product of the set of rows and the set of columns:

$$R = \frac{1}{4}n_1n_2(n_1+1)(n_2+1)$$

where n_1 is the number of rows, and n_2 is the number of columns.

The rectangular grid reduces to a triangular grid by this sequence:

Of the rectangles in the rectangular grid, only those that touch at least one of the two lower corners become triangles in the triangular grid. Consequently, all rectangles in the shaded areas remain quadrilaterals, and so must be excluded when calculating the number of triangles. The number of triangles is therefore determined:

$$T = \frac{1}{4}n_1n_2(n_1+1)(n_2+1) - \frac{1}{4}(n_1-1)(n_2-1)n_1n_2$$

= $\frac{1}{2}n_1n_2(n_1+n_2)$

Enumerating them

Calculating the number is one thing, but actually listing them all is quite another.

There are three kinds of triangles in the figure:

Touching lower vertices	Number
Left only	$\frac{1}{2}n_1n_2(n_1-1)$
Right only	$\frac{1}{2}n_1n_2(n_2-1)$
Both	$n_1 n_2$

Then a simple order of enumeration can be done. For the left-only triangles, iterate over the $\frac{1}{2}(n_1 - 1)n_1$ possible ranges of angles at the left vertex, and the n_2 triangle lengths. Do the right-only triangles similarly. For triangles that include the base side, the process is simpler – just iterate over the ranges up each lower vertex.

Geometry

The lines from the left-hand lower vertex have the coordinates

$$(-1, 0) \rightarrow \left(1 - \frac{i_1}{n_1}, \frac{i_1}{n_1}\right)$$

hence an equation of

$$i_1 x + (i_1 - 2n_1)y = -i_1$$

The lines from the right-hand lower vertex have the coordinates

$$(1,0) \rightarrow \left(\frac{i_2}{n_2} - 1, \frac{i_2}{n_2}\right)$$

giving the equation

$$i_2 x + (2n_2 - i_2)y = i_2$$

Solving these equations gives

$$x = \frac{i_1 n_2 - n_1 i_2}{i_1 i_2 - n_1 i_2 - i_1 n_2}$$
$$y = -\frac{i_1 i_2}{i_1 i_2 - n_1 i_2 - i_1 n_2}$$

Progress

Task	Time taken (min)	
	(approx)	
Theory: determining the number	30	
Coding: first console version	10	
Theory: enumerating them	15	
Coding: second console version	35	
Theory: geometry	35	
Coding: GUI version	60	